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In biological and synthetic materials, many important processes involve charges that are present in
a medium with spatially varying dielectric permittivity. To accurately understand the role of electro-
static interactions in such systems, it is important to take into account the spatial dependence of the
permittivity of the medium. However, due to the ensuing theoretical and computational challenges,
this inhomogeneous dielectric response of the medium is often ignored or excessively simplified.
We develop a variational formulation of electrostatics to accurately investigate systems that exhibit
this inhomogeneous dielectric response. Our formulation is based on a true energy functional of the
polarization charge density. The defining characteristic of a true energy functional is that at its min-
imum it evaluates to the actual value of the energy; this is a feature not found in many commonly
used electrostatic functionals. We explore in detail the charged systems that exhibit sharp discon-
tinuous change in dielectric permittivity, and we show that for this case our functional reduces to a
functional of only the surface polarization charge density. We apply this reduced functional to study
model problems for which analytical solutions are well known. We demonstrate, in addition, that
the functional has many properties that make it ideal for use in molecular dynamics simulations.
© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789955]

I. INTRODUCTION

Many biological systems involve mobile or fixed charges,
the electrostatic response of which is key to our under-
standing of the physical behavior of such systems. Nucleic
acids and many proteins are charged in physiologically rel-
evant conditions. The interactions that arise from the pres-
ence of these charges are crucial in the determination of
the structure and function of these polymers.1, 2 Biologi-
cal processes such as signaling in cells involve the cre-
ation of electrical potential differences and transport of ions
across the cellular membrane.3 On the other hand, in the
design and stabilization of many different synthetic struc-
tures, the electrostatic forces play a major role. Examples
include self-assembled colloidal dispersions,4 polynucleotide
adsorption,5 DNA precipitation in multivalent salts,6, 7 over-
charged surfaces,8, 9 patterned surfaces,10 spontaneous ad-
sorption of ions at liquid-liquid interfaces,11–13 faceted thin
shells,14 viral assembly,15 and various dynamical processes
including DNA gel electrophoresis16 and related polyelec-
trolyte separation process.17, 18 Theoretical investigations of
these interesting materials and biological systems must there-
fore accurately incorporate electrostatic interactions.

Under the conditions of high ionic concentration or in
the presence of multivalent ions, when the finite size of ions
and the inter-ionic correlations become significant, mean field
theories are generally found inadequate to capture important
electrostatic effects.19 For arbitrarily curved geometries or
where the dielectric response of the medium is not homoge-
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neous, the associated electrostatics problem gets too compli-
cated even for the more sophisticated analytical treatments,20

and the use of numerical techniques becomes necessary. How-
ever, an accurate computer simulation involving electrostatic
interactions presents its own challenges. The first challenge
stems from the long range of the Coulomb force which im-
plies that every charge interacts with every other charge.
Thus, a system of N charges requires an expensive O(N2)
force (or energy) calculation at every simulation step. At-
tempts to ameliorate this scaling behavior have resulted in
the development of several methods: e.g., Ewald summa-
tion, particle-mesh methods, fast multipole methods,21 and
local electrostatics algorithms.22–24 The other main challenge
arises due to the presence of dielectric heterogeneities in the
medium, and this constitutes the main focus of the present
paper.

Free charges polarize their surrounding dielectric
medium and the resulting net polarization and electric fields
can have complex behavior. Modeling of systems with elec-
trostatic interactions should, ideally, incorporate this dielec-
tric response of the medium. An explicit inclusion of the
medium components (molecules of the solvent, for exam-
ple) as a part of the model for the real system renders a
prohibitively large number of degrees of freedom to simu-
late, such that even with the most efficient methods21, 22 direct
simulation becomes too computationally expensive. In many
cases, the introduction of a spatially varying dielectric con-
stant in the model is sufficient to capture the effects of polar-
izability and describe the dielectric response. In the simplest
case of a uniform dielectric response, a single dielectric con-
stant can describe a coarse-grained medium, and simulations
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can proceed as they would in free space, albeit with a scaled
Coulomb’s law.

However, most real situations involve regions with dif-
ferent dielectric response, as is the case for proteins within
an aqueous cellular medium or for emulsions where oil and
water are partitioned.25 In the presence of this varying di-
electric response, the simplest form of Coulomb’s law breaks
down and one has to accurately solve the Poisson equation,
at each simulation step, to obtain the necessary force (en-
ergy) information for the propagation of ionic coordinates.
This adversely affects the stability and efficiency of the re-
sulting numerical procedure. Because of these computational
challenges, the problem of treating dielectric heterogeneities
in charge simulations continues to be a subject of intense
research.23, 26–34

A few previous attempts towards the solution of the
problem of inhomogeneous dielectric response have in-
volved a reformulation of electrostatics as a variational
problem.13, 23, 26, 27, 30, 35 Here, the solution to the Poisson equa-
tion is obtained not as a solution of a differential equation,
but as the extremum of a suitably constructed functional.36, 37

An important advantage of adopting a variational approach
is that it offers the possibility of bypassing the effort to ex-
plicitly optimize the functional at each step by framing the
problem in such a way that the very process of updating the
simulation guarantees the optimization of the functional. In
other words, since the optimization of the functional is equiv-
alent to the solution of the Poisson equation, we are offered
the possibility of solving the Poisson equation on-the-fly in
tandem with the generation of the new charge configuration.
However, this possibility arises only when the variational ap-
proach is based on an energy functional: a functional which
minimizes to the true electrostatic energy. We note that in the
literature, there is an abundance of functionals that are not en-
ergy functionals27, 36–39 and therefore the numerical schemes
associated with these functionals do not employ the ideas of
dynamical optimization.

In addition to the need for a true energy functional for
an efficient numerical implementation of the variational pro-
cedure, it is also crucial to produce a functional with the
appropriate function variable(s). In many cases a particu-
lar electrostatic variable offers distinct advantage over oth-
ers. For example, a coarse-grained model often employed to
study phenomena in both biological and synthetic settings
is that of ions present in piecewise-uniform dielectrics sep-
arated by sharp interfaces (see Fig. 1). In this case, it is ad-
vantageous to choose the polarization charge density as the
variable to solve for, rather than the electrostatic potential
or the polarization vector. This is because when the dielec-
tric response of the medium is piecewise uniform, the un-
known polarization charge density resides only on the in-
terface, and thus we are presented with the possibility to
reduce the full three-dimensional electrostatic problem to a
two-dimensional one.

In the light of the above discussion, it is clear that an
energy functional of the polarization charge density would
provide many advantages with regards to the numerical imple-
mentation of the variational method formulated to study prob-
lems involving dielectric heterogeneities. In the literature, one

FIG. 1. A uniform dielectric medium characterized by permittivity ε1 sep-
arated from another region of permittivity ε2 by a boundary that is treated
as a thin interface. Positive (red) and negative (green) ions are present in ei-
ther media. Coarse-grained models of this kind are often employed to study
systems such as charged bio-macromolecules in aqueous solution or charged
colloidal suspensions.

finds many functionals along with their associated numerical
minimization procedures. Though a functional of polarization
density for a general system has been developed in Ref. 27, it
is not an energy functional. Similarly, the functionals derived
in Refs. 24, 40, and 41 are energy functionals, but the basic
field variables employed are vector fields such as the polar-
ization vector40, 41 or the electric field,24 not the polarization
charge density. Attard30 has provided an energy functional of
the surface polarization charge density, but this functional is
derived for a specific system that involves all free charges to
be constrained in one uniform dielectric medium.

In a recent paper (Ref. 42), we introduced a variational
formulation of electrostatics that produced an energy func-
tional of the polarization charge density. This functional
reads:

F [ω] = 1

2

∫∫
ρrGr,r′ (ρr′ + �r′ [ω]) d3r ′d3r

−1

2

∫∫
�r[ω]Gr,r′ (ωr′ − �r′[ω]) d3r ′d3r, (1)

where ω is the polarization charge density and �r[ω] is both
a functional of ω(r) and a function of r and is defined as

�r[ω] = ∇ ·
(

χr∇
∫

Gr,r′ (ρr′ + ωr′ ) d3r ′
)

. (2)

In the above equations χ is the susceptibility of the medium,
ρ is the free charge density, and G(r, r′) = |r − r′|−1 is the
Green’s function in free space. In our derivation we assumed
that the medium polarization obeys linear response and also
assumed the existence of Dirichlet boundary conditions. Both



054119-3 Jadhao, Solis, and Olvera de la Cruz J. Chem. Phys. 138, 054119 (2013)

these assumptions are standard from the point of view of con-
structing electrostatic free energy functionals.

F [ω] is applicable to any configuration of free charges
and works for arbitrary spatial variation in dielectric response.
We also provided the expression of this functional for the im-
portant case of point charges present in piecewise-uniform di-
electrics and developed a Car-Parrinello molecular dynamics
scheme to study the equilibrium properties of such systems.
As an application, we computed the density profiles for mono-
valent salt ions near a spherical emulsion droplet separating
two liquids of different dielectric constants.

In this paper, we present a detailed derivation of F [ω],
showing steps that were omitted in Ref. 42 for the lack of
space, and discuss the important features of our variational
formulation that enable the production of an energy func-
tional. Also, we explore in detail, with several examples, the
particular case of piecewise-uniform dielectric response. In
addition, we provide the proofs that show that F [ω] is an en-
ergy functional. In the supplementary information of Ref. 42
we proved the minimum property of this functional at its ex-
tremum. Here we show that upon extremizing this functional
one finds the usual electrostatic relation for the polarization
charge density and the extremum value of the functional coin-
cides with the true electrostatic energy of the system. For the
sake of completeness we also include the proof of the func-
tional becoming a minimum at its extremum.

The paper is organized as follows. In Sec. II we derive
F [ω] and discuss the key aspects of our variational formula-
tion. In Sec. III, we explicitly specialize F [ω] to the case of
sharp dielectric interfaces, and apply the resulting functional
to some simple interfacial shapes. In Sec. IV we demonstrate
a grid-based numerical procedure to implement the functional
minimization and some concluding remarks are made in
Sec. V. In Appendix A we prove that F [ω] is an energy
functional. Finally, Appendix B discusses the application of
our variational principle to the simple case of a uniform
dielectric.

II. VARIATIONAL FORMULATION

In the first half of this section we provide a detailed
derivation of the functional given in Eq. (1). The second half
discusses the important features of the variational formulation
that determine the extremal properties of the resulting func-
tional. Gaussian units are used throughout.

A. Derivation of F [ω]

We begin with the standard expression for the electro-
static energy written in its equivalent functional form:

F [E] = 1

8π

∫
εr |Er|2 d3r. (3)

Here ε is the dielectric permittivity and E is the electric field.
Following the formulation introduced in Ref. 12, we include
Gauss’s law as a constraint to the functional in (3) via the

Lagrange multiplier φ, obtaining

F [E, φ] = 1

8π

∫
εr|Er|2d3r

−
∫

φr

(
∇ ·

(
εrEr

4π

)
− ρr

)
d3r. (4)

We note that φ can be shown to coincide with the electro-
static potential at equilibrium. Also, we take F to depend
parametrically on the free charge density ρ, implying that the
latter will not be used as a variational field. We assume that
the medium polarization P obeys linear response: P = χE,
where χ is the susceptibility connected to ε by the relation ε

= 1 + 4πχ . Employing this relation between ε and χ we now
introduce the field variable P in (4) in the following way:

F [E, P, φ] = 1

8π

∫
|Er|2d3r +

∫ |Pr|2
2χr

d3r

−
∫

φr

(
∇ · Er

4π
+ ∇ · Pr − ρr

)
d3r. (5)

Variations of (5) with respect to E and φ give

δE : Er = −∇φr, (6)

δφ : ∇ · Er = 4π (ρr − ∇ · Pr) . (7)

In obtaining the above variations we make use of the Dirichlet
boundary condition (DBC):

φr = 0 for r ∈ S, (8)

where S is a boundary invoked at infinity. All the surface inte-
grals that appear as a consequence of taking the variations are
rendered void by the use of DBC. From (6) it is clear that φ

must be the electrostatic potential. Using (6) we eliminate E
from (7) and obtain

∇2φr = −4π (ρr − ∇ · Pr) . (9)

Equation (9) is the Poisson equation satisfied by the potential
φ when the charge density in free space is given by ρ − ∇ · P.
The solution of the above equation can be written as

φr =
∫

Gr,r′ (ρr′ − ∇ · Pr′ ) d3r ′, (10)

where G(r, r′) is the Green’s function in free space which sat-
isfies the equation:

∇2
r Gr,r′ = −4πδ(r − r′), (11)

and is given by

Gr,r′ = 1

|r − r′| . (12)

Note that G(r, r′) also obeys DBC. Substituting φ from (10)
in (6), we obtain E in terms of P:

Er = −∇
∫

Gr,r′ (ρr′ − ∇ · Pr′) d3r ′. (13)
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Using (10) and (13) we eliminate φ and E from (5) to obtain
a functional with P as the sole variational field:

F [P] =
∫ |Pr|2

2χr
d3r + 1

2

∫∫
(ρr − ∇ · Pr) Gr,r′

× (ρr′ − ∇ · Pr′ ) d3r ′d3r. (14)

It can be shown that the correct constitutive rela-
tion between the polarization field and the electric field
is obtained as a result of the extremization of the above
functional.30 Furthermore, one can prove that F [P] is an
energy functional; that is, its minimum computes the equi-
librium electrostatic energy.30 The functional in (14) has
been obtained previously,40, 41 but with different deriva-
tions than ours. We now show how to transform F [P]
to an energy functional of the polarization charge density
ω. This transition begins by inserting the definition of ω,
namely,

ωr = −∇ · Pr, (15)

in (14) by means of a Lagrange multiplier ψ :

F [P, ω,ψ] =
∫ |Pr|2

2χr
d3r + 1

2

∫∫
(ρr + ωr) Gr,r′

× (ρr′ + ωr′) d3r ′d3r −
∫

ψr (ωr + ∇ · Pr) d3r.

(16)

We note that ψ will soon be shown to coincide with the elec-
trostatic potential φ at equilibrium. Taking variations of the
above functional with respect to ω and P gives the following
relations:

δω : ψr =
∫

Gr,r′ (ρr′ + ωr′ ) d3r ′, (17)

δP : Pr = −χr∇ψr. (18)

Equation (17) expresses ψ in terms of ω. Substituting ψ from
(17) in (18) expresses P in terms of ω:

Pr = −χr∇
∫

Gr,r′ (ρr′ + ωr′) d3r ′. (19)

At this point, by using (17) and (19), we can eliminate ψ and
P from (16) in favor of ω and complete the desired trans-
formation. However, while the functional that results from
this procedure does single out the correct physical quantity
upon extremization, it becomes a maximum, not a minimum,
at equilibrium. We elaborate more on this observation in
Sec. II B.

To obtain the functional of ω with the desired extremal
behavior, one must resist substitution at this stage and instead
take the unutilized variation of F [P, ω,ψ] with respect to ψ

which leads to

ωr = −∇ · Pr. (20)

Substituting P from (19) in the above equation we obtain

ωr = ∇ ·
{
χr∇

∫
Gr,r′ (ρr′ + ωr′) d3r ′

}
. (21)

The above relation, as one can tell by inspection, is the cor-
rect physical relation that the polarization charge density must
satisfy. Equations (17) and (20), when viewed together, and
compared with (10) imply that ψ is indeed the electrostatic
potential at equilibrium. At this point the substitution of ψ ,
P, and ω from (17), (19), and (21), respectively, into the
functional of (16) leads to our central result: the functional
in Eq. (1).

In Appendix A we prove that F [ω] is an energy func-
tional and its minimization provides the correct induced
charge density. We now analyze in some depth why some sub-
stitutions lead to an energy functional and why others do not.

B. Key aspects of the variational principle

In this section we elaborate on some key observations
made during the process of deriving F [ω]. We noted in
Sec. II A that not all substitutions to eliminate field variables
from (16) in favor of ω lead to the desired result. We observed
that ψ and P can be eliminated from (16) using Eqs. (17) and
(19), thus leading to a functional with ω as the sole variational
field. One can show that this process results in a functional
I[ω] with the functional density: ρrGr,r′ (ρr′ + �r′ [ω]) /2
− ωrGr,r′ (ωr′ − �r′[ω]) /2. Upon extremization, I[ω] singles
out the correct physical quantity but becomes a maximum at
equilibrium. In fact, I[ω] is exactly the negative of the func-
tional in Ref. 27, neither of which are energy functionals.

We note that functionals F [ω] and I[ω] share a common
structure: the expression for the total electrostatic energy (the
first term in either functional) is constrained by the correct
physical relation that ω must satisfy, namely ω − �[ω] = 0.
The one but crucial difference between these functionals is
in the choice of the constraint that is enforced by means of
Lagrange multipliers. While the constraints themselves might
appear equivalent, their different explicit forms can endow the
functional with different properties. Previous functionals that
lack some desirable properties can be understood as arising
from deficient constraint expressions. Our current formulation
provides the appropriate constraint form.

It is equally important to point out that the set of substi-
tutions that we employed in Sec. II A to arrive at the desired
result are not the only ones that lead to an energy functional.
Due to the iterative nature of Eq. (21), different sets of sub-
stitutions leading to different energy functionals are possible.
For example, resisting substitutions post Eq. (21), and instead
employing (21) to replace ω with �[ω] in (17) leads to a new
relation between ψ and ω. Starting with this new relation, we
can execute the same cycle of steps as before to obtain new
expressions for P and ω in terms of ω. We thus arrive at the
following set of relations:

ψr =
∫

Gr,r′ (ρr′ + �r′[ω]) d3r ′, (22)

Pr = −χr∇
∫

Gr,r′ (ρr′ + �r′[ω]) d3r ′, (23)

ωr = ∇ ·
(

χr∇
∫

Gr,r′ (ρr′ + �r′[ω]) d3r ′
)

. (24)
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We note that at equilibrium the above obtained relations for ψ ,
P, and ω coincide with the corresponding relations obtained
in Sec. II A: Eqs. (17), (19), and (21). At this point, if we
substitute ψ , P, and ω from (22)–(24), respectively, into the
functional of (16), one can show that the resulting functional
(F (2)[ω]; see Eq. (25)) is also an energy functional.

As should be evident, the above outlined cycle of steps
can be repeated many times, yielding more energy function-
als. Specifically, we find a family of functionals {F (n)[ω]}
with n = 1, 2, 3, . . . , where the nth member has the form

F (n)[ω] = 1

2

∫∫
ρrGr,r′

(
ρr′ + �

(n)
r′

)
d3r ′d3r

−1

2

∫∫
�(n)

r Gr,r′
(
�

(n−1)
r′ − �

(n)
r′

)
d3r ′d3r. (25)

In Eq. (25), �(n) is both a function of r and a functional of ω,
but we have suppressed the functional part of the notation for
brevity. �(n) is given by

�(n)
r = ∇ ·

(
χr∇

∫
Gr,r′

(
ρr′ + �

(n−1)
r′

)
d3r ′

)
, (26)

with �
(0)
r [ω] defined as �

(0)
r [ω] = ∫

δ(r − r′)ω(r′)d3r ′ = ω.
Note that, by letting n = 1 in (26) we obtain �(1)[ω] = �[ω],
where �[ω] is given by Eq. (2).

It can be shown that for every n the functional given by
(25) is an energy functional. Although these functionals are
different from one another, upon extremization each of them
give the same iterative relation, Eq. (21), and all minimize
to the true electrostatic energy. Proofs of these assertions are
similar to the ones that appear in Appendix A. By letting
n = 1 in (25) it is easy to see that F (1)[ω] = F [ω]. F [ω]
thus represents the simplest member of a large family of en-
ergy functionals, offering the most ease with regards to use
in analytical and numerical minimization procedures. We will
only work with F [ω] in the rest of this paper.

Each member of the family {F (n)[ω]} possesses the same
basic structure alluded to before: to a term representing the
electrostatic energy (the first double integral in (25)), the iter-
ative relation that ω must satisfy is included as a constraint.
As is evident from (25), for each iterative relation that sup-
plies the constraint equation, our variational formalism finds
the appropriate Lagrange multiplier required to enforce this
constraint such that the resulting functional acquires the de-
sired extremal properties.

III. SHARP DIELECTRIC INTERFACES

The functional F [ω] derived in Sec. II works for any
medium with linear dielectric response, even for arbitrary spa-
tial variations. In many instances, it is sufficient to represent
the real system by a coarse-grained model where regions of
uniform, but different, dielectric response are separated from
each other by interfaces that can be assumed to be thin. For
example, in the problem of colloids in a polar solvent, mod-
elling the colloid as one uniform dielectric continuum and the
surrounding solvent as another uniform dielectric of different
permittivity provides a good representation of the real sys-
tem. Other examples where coarse-graining of this kind is of-

ten employed include: oil-water emulsions and biopolymers,
such as lipid bilayers, in aqueous solution. In this light, we
now consider the application of our functional to the problem
of ions present in a system exhibiting this piecewise-uniform
dielectric response. We show that for this specific dielectric
response the functional F [ω] reduces to a functional with
only the interfacial induced charge density as the variational
field.

A. The functional for the case of piecewise-uniform
dielectric response

For the sake of brevity, we restrict ourselves to two uni-
form dielectrics separated by a single sharp interface I, see
Fig. 2. Extension to multiple dielectrics is straightforward. We
assume that ions reside in the bulk of either dielectric. Note
that the interface can assume arbitrary geometry. Let ε1 and ε2

denote the permittivities of the two media. We consider ions
to be point particles with the i th ion having a charge qi. For a
system with N ions, the free charge density can be written as
ρ(r) = ∑N

i=1 qiδ (r − ri), where ri prescribes the position of
the i th ion. It is useful to define the permittivity at the inter-
face, taken to be the mean of permittivities on either side: εm

= (ε1 + ε2)/2; and introduce εd = |ε2 − ε1|/4π as a measure
of the permittivity difference across I.

Clearly, the gradient of ε, or equivalently χ , vanishes ev-
erywhere except at the interface. Mathematically we express
this as

∇χr = εd

∫
I
n̂rδ (r − s) d2s, (27)

where n̂ is the unit normal vector at the interface, chosen to
point in the direction of increasing permittivity, and s is the
position vector of an arbitrary point on the interface. When
r /∈ I, ∇χ (r) = 0, otherwise ∇χ (r) = εd n̂(r). Because each
medium offers a uniform dielectric response, the induced
charge density in the bulk is known analytically from simple
electrostatics principles,36 and it is

ωbulk
r = −εr − 1

εr
ρr. (28)

FIG. 2. Sketch showing two uniform dielectric regions of permittivities ε1
and ε2 separated by a sharp interface that may assume an arbitrary shape.
The figure also shows the presence of point charges in either media and
the induced charge on the interface. The effective interactions appearing in
Eq. (30) between the various charged constituents of the system are also
shown.
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It is well known that the above bulk contributon leads to an
effective charge density of ρ/ε. Due to the discontinuity in the
permittivity at the interface, induced charges also exist on the
interface and their magnitude is in general unknown. Thus,
the overall induced charge density is expressed as the sum of
two terms:

ωr = ωbulk
r +

∫
I
ωrδ (r − s) d2s, (29)

where the first term on the right hand side in (29) is given by
(28), and the second term is the interfacial (surface) induced
charge density. Similar to the mathematical representation of
∇χ , we have expressed the interfacial induced charge den-
sity as a surface integral, such that when r /∈ I the integral
vanishes.

Substituting ω from (29) in (1), and using Eq. (27), we
find that several volume integrals in (1) reduce to surface in-
tegrals and F [ω] is transformed to a functional of the surface
induced charge density:

F [ωs] = 1

2

∫∫
ρr

◦◦
Kr,r′ρr′d3rd3r ′ + 1

2

∫∫
I
ρr

◦•
Kr,sωsd

3rd2s

+ 1

2

∫
I

∫
I
ωs

••
Ks,s′ωs′d2sd2s ′, (30)

where ω(s) is the induced charge density at the position s on

the interface, and
◦◦
K ,

◦•
K , and

••
K are, respectively, the effective

potentials of interaction between two free charges, between a
free charge and an induced charge, and between two induced
charges (see Fig. 2). These effective interactions are given by

◦◦
Kr,r′ = 1

εr
Gr,r′ + 1

εr
Gr,r′

1

εr′
+ 1

εr
Gr,r′

1

εr′

◦•
Kr,s = εr − εm

εr
Gr,s + Gs,r − (2εm − 1) Gr,s

εr
+ 2Gr,s

εr

••
Ks,s′ = εm (εm − 1) Gs,s′ − (2εm − 1) Gs,s′ + Gs,s′ . (31)

While the function G in (31) is the bare Green’s function given
by (12), we find two new potentials of interaction in (31), G

and G, which are defined as

Ga,b = εd

∫
I
Ga,u n̂u · ∇uGu,b d2u

(32)

Ga,b = ε2
d

∫
I

∫
I
n̂u · ∇uGa,u Gu,v n̂v · ∇vGv,b d2ud2v,

where a, b are arbitrary position vectors and u, v are position
vectors of arbitrary interfacial points.

The functional in Eq. (30) can be compared with the func-
tional of the surface polarization charge density obtained in
Ref. 27. The latter functional, as we noted earlier in Sec. II B,
is not an energy functional. We find that the major difference
between these two functionals is the absence of the interac-
tion G in the functional of Ref. 27. We note that the presence
of this particular interaction potential in F [ωs] is the direct
result of employing the appropriate choice for the constraint
to the electrostatic energy, an aspect of the variational formu-
lation we highlighted in Sec. II B. It also appears that a func-
tional of polarization charge density constructed with a com-

bination of only G and G interaction potentials (like the one
in Ref. 27) ceases to remain an energy functional; although
we have not been able to rigorously show this. Our attempts
to construct an energy functional involving only G and G in-
teractions via the variational formulation presented here, or
otherwise, failed.

We now employ F [ωs] to study some simple model sys-
tems exhibiting piecewise-uniform dielectric response. For
these systems we can analytically carry out the integrals in-
volved in Eq. (30) by finding a suitable basis and expanding
the Green’s function and induced charge density in terms of
the associated basis functions; eventually expressing the func-
tional as a single integral involving the undetermined coeffi-
cients of expansion. We show that for these solvable models,
F [ωs] can be minimized analytically which leads to the well
known expressions for the associated induced charge density.

B. A point charge near a thin planar wall

We consider a planar interface separating two dielectrics
of different permittivities ε1 and ε2, with ε1 > ε2 assumed.
A point particle of charge q is placed at a distance d from the
interface in the region with lower permittivity (see Fig. 3). We
derive the induced charge density at the interface for this sys-
tem using our variational formalism, in the process revealing
the expression for the functional for this specific case.

We adopt cylindrical coordinates (R, φ, z), assume the
interface to be the z = 0 plane, and take the point charge to be
on the positive z axis at a distance d from the origin. The z > 0
domain then becomes the dielectric with ε2 permittivity. It is
useful to choose Bessel functions of integer order as the basis
functions in this case. In this basis the bare Green’s function
can be expanded as

Gr,r′ =
∞∑

m=−∞
eim(φ−φ′)

∫ ∞

0
Jm(αR)Jm(αR′)e−α|z−z′|dα.

(33)

We note that the position vector of the point charge is
rq = (0, 0, d) and the position vector of a point on the inter-
face has the form s = (R, φ, 0). Also, given the set up of this
problem and recalling the definition of the normal vector (it

FIG. 3. Sketch showing a flat interface (the z = 0 plane) separating the region
z < 0 of permittivity ε1 with the region z > 0 characterized by a different di-
electric constant ε2. A point charge q is present near the interface at a distance
d from the origin in the medium with permittivity ε2.
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points from lower permittivity dielectric to the higher one),
we have n̂ = −ẑ. Let us now evaluate the functional given in
(30) for this particular different dielectric problem. For this
purpose we would need the Green’s functions G(rq, s) and
G(s, s′), and the dot product of their gradients with the normal
vector n̂. These are readily evaluated from (33) by employing,
wherever necessary, the properties of Bessel functions: J0(0)
= 1, Jm�=0(0) = 0. Using these functions the necessary renor-

malized Green’s functions G and G can be evaluated from
(32), and employing them in (31), the effective interactions
◦◦
K ,

◦•
K , and

••
K are known. Finally, just like the Green’s function

in (33), the induced charge density, which due to symmetry is
only a function of R, can be written as an integral involving
Bessel function J0:

w(R) =
∫ ∞

0
A(α)J0(αR)dα, (34)

where A(α) are as of now undetermined. Submitting the eval-

uated interactions
◦◦
K ,

◦•
K , and

••
K , and ω(s) ≡ ω(R) from the

above equation in the functional of (30), and remembering
that the area element in our chosen coordinates is RdRdφ,
we carry out most of the resulting integrals by employing the
orthogonality relation∫ ∞

0
Jm(αR)Jm(αR′)dα = 1

Rδ(R − R′), (35)

and obtain the following functional:

F|[A(α)] = q2

8ε2
2

(ε1 − ε2) (ε1 − ε2 − 2)
∫ ∞

0
e−2αddα

+ qπ

2ε2
(ε1 − ε2) (ε1 + ε2 − 2)

∫ ∞

0

A (α)

α
e−αddα

+π2

2
(ε1 + ε2) (ε1 + ε2 − 2)

∫ ∞

0

A2 (α)

α2
dα.

(36)

The subscript on F in (36) represents that the above is a func-
tional for the planar interface case.

Clearly, F|[A(α)] is a functional of the lone function
variable A(α), which through (34) represents the induced sur-
face charge density. We now take the functional derivative of
F|[A(α)] and set it to zero in order to determine A(α). It is
obvious that only the last two terms in (36) contribute to this
process and we obtain

δF|[A(α)]

δA(α)
= qπ

2ε2
(ε1 − ε2) (ε1 + ε2 − 2)

e−αd

α

+π2 (ε1 + ε2) (ε1 + ε2 − 2)
A (α)

α2
, (37)

which when set to zero reveals the coefficients A(α) to be the
following:

A(α) = −ε1 − ε2

ε1 + ε2

q

2πε2
αe−αd . (38)

Using the expression for A(α) from above in (34) and carry-
ing out the single integral involving the zeroth order Bessel

function, we get

ω(s) ≡ ω(R) = −ε1 − ε2

ε1 + ε2

q

2πε2

d

(R2 + d2)3/2
. (39)

The above expression matches with the standard result for the
surface induced charge density (see Ref. 36).

C. A point charge near a thin spherical interface

We now derive the functional form and induced density
for the case of a point charge near a spherical dielectric. The
derivation is similar to the one just carried out for the planar
case.

We consider a dielectric sphere of radius a and permittiv-
ity ε1 surrounded by a different dielectric of permittivity ε2

(where ε1 > ε2 is assumed). There is a free charge q placed
outside the sphere. In this example, the use of spherical co-
ordinates r, θ , φ is most convenient. We take the sphere to
center at the origin r = 0 and the point charge is assumed to
lie on the positive z axis at a distance d from the origin (see
Fig. 4), giving it the position vector rq = (d, 0, 0). Our con-
ventions result in the the unit normal vector to be n̂ = −r̂ , i.e.,
pointing into the sphere.

We start by choosing a suitable basis to expand the
Green’s function. This basis turns out to be spherical harmon-
ics and the expansion of G(r, r′) in the latter is given by

G(r, r′) = 4π

∞∑
l=0

1

2l + 1

rl

r ′l+1

l∑
m=−l

Ylm(θ, φ)Y ∗
lm(θ ′, φ′),

(40)

FIG. 4. Sketch of a dielectric sphere of radius a and permittivity ε1 em-
bedded in a region characterized by dielectric permittivity ε2. The sphere
is centered at the origin and is oriented such that the z axis coincides with
θ = 0, where θ is the polar angle. A point charge q is placed outside the
dielectric sphere, on the z-axis at a distance d from the origin.
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where r = |r|, r ′ = |r′|, and the above expression holds for
r ≤ r′. As dictated by Eq. (32), in order to evaluate the in-

teractions G and G for this problem, we need the following
Green’s functions and its derivatives: G(s, rq), n̂ · ∇G(s, rq ),
G(s, s′), and n̂ · ∇G(s, s′), where s and s′ are the position vec-
tors of arbitrary points on the sphere. These functions are
readily evaluated from Eq. (40) by employing the relations:

Ylm(0, 0) = 0 for m �= 0, and Yl0(0, 0) =
√

2l+1
4π

. Once G and

G are known, the effective interactions
◦◦
K ,

◦•
K , and

••
K for this

problem are computed from (31). These interactions are then
plugged into the functional in (30). Also, for symmetry rea-
sons the surface induced charge density ω(s) is independent
of the variable φ and just like any regular function of θ , it can
be expanded in terms of spherical harmonics as

ω(θ ) =
∞∑
l=0

AlPl(cos θ ) =
∞∑
l=0

√
4π

2l + 1
AlYl0(θ ), (41)

where the coefficients of expansion Al are as yet unknown.
Using (41) in (30), and employing the orthonormality relation

∫ 2π

0

∫ π

0
Ylm(θ, φ)Y ∗

l′m′(θ, φ) sin θdθdφ = δmm′δll′ (42)

wherever necessary, the functional for this particular different
dielectric problem is found to be

F◦[{Al}] = q2

2ε2
2

∞∑
l=0

ε1 − ε2

2l + 1
l

(
ε1 − ε2

2l + 1
l − 1

)
a2l+1

d2l+2

+ q

2ε2

∞∑
l=0

4π

2l + 1

ε1 − ε2

2l + 1
l(b − 2)

al+2

dl+1
Al

+a3

8

∞∑
l=0

(
4π

2l + 1

)2

b(b − 2)A2
l , (43)

where

b = ε1 + ε2 − ε1 − ε2

2l + 1
, (44)

and the subscript on F in (43) denotes the spherical interface
case under study.

Evaluating the functional derivative of F◦[{Al}] and set-
ting it to zero leads up to an equation for Al, which upon sub-
sequent solving for, gives

Al = −2q

ε2

ε1 − ε2

4πb
l
al−1

dl+1
. (45)

Substituting b from (44) in the above equation leads to

Al = − q

4πε2

(ε1 − ε2)l(2l + 1)

l(ε1 + ε2) + ε2

al−1

dl+1
. (46)

Plugging Al from (46) in (41) gives the induced charge density
on the interface to be

ω(θ ) = − q

4πε2

∞∑
l=0

(ε1 − ε2)l(2l + 1)

l(ε1 + ε2) + ε2

al−1

dl+1
Pl(cos θ ), (47)

which matches with the standard result available in Ref. 27.

IV. NUMERICAL MINIMIZATION OF F [ωs]

When many point charges are present near an arbitrar-
ily shaped dielectric interface, one must resort to numerical
methods to minimize F [ωs] in order to compute the induced
charge density on the interface. Therefore, we now turn to-
wards discussing the numerical implementation of our varia-
tional method.

To perform the minimization numerically we first parti-
tion the dielectric interface into M finite elements. To each
element k we assign an average induced charge density ωk, an
area ak and a normal vector nk. Under this discrete represen-
tation, F [ωs] becomes a functional of the set of discrete in-
duced charge density values {ωk} and Eq. (30) is transformed
into

F [{ωk}] = 1

2

N∑
i=1

N∑
j=1
j �=i

qi

◦◦
Kri ,rj

qj + 1

2

N∑
i=1

M∑
k=1

qi

◦•
Kri ,sk

ωkak

+ 1

2

M∑
k=1

M∑
l=1

ωk

••
Ksk ,sl

ωlakal, (48)

where sk is the position vector of the kth finite element and
N is the number of point charges. Note that we represent
the point charges with the density ρ(r) = ∑N

i=1 qiδ(r − ri),
where qi and ri are, respectively, the charge and position vec-

tor of the i th point charge. The effective interactions
◦◦
K ,

◦•
K ,

and
••
K in the above equation are the discretized version of

their continuum counterparts in Eq. (31). We note that the
discretization process introduces divergences in (48), for ex-
ample when k = l, and to get around these divergences, we
replace the sum at these points by an approximate integral
which is evaluated analytically.27

F [{ωk}] can now be minimized by using steepest descent
or simulated annealing methods. We choose the procedure of
simulated annealing and implement it using a molecular dy-
namics (MD) scheme.43 We include F [{ωk}] as the potential
energy part of a Lagrangian that contains a fictitious kinetic
energy term:

∑M
k=1 μkω̇

2
k/2, where μk is a fictitious mass as-

signed to the kth induced charge value. The set {ωk} repre-
sents a point in the (fictitious) configuration space and equa-
tions of motion of this point are derived from the Lagrangian.
A feature of the system that becomes important in simulations
is that, as a result of Gauss’s law, the net induced charge at the
interface is a constant. We directly enforce this constraint at
each step of the simulation via the shake-rattle algorithm.44

The simulation begins at an arbitrarily chosen point in
the fictitious configuration space and we choose μk and the
simulation time step  such that the ensuing dynamics is sta-
ble. The dynamics of this point is generated via standard MD
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FIG. 5. The system for testing the numerical procedure designed to minimize
F [ωs]: positive (red) and negative (green) ions inside and outside a spheri-
cally shaped dielectric region. The dielectric permittivity inside (outside) the
sphere is εin (εout). The ions have the charge of ±1e and are represented as
spheres of diameter σ ; the radius of the dielectric sphere is a = 10σ . See text
for the meaning of the symbols.

algorithm, using the force obtained as a result of computing
the gradient of the functional in (48) with respect to ωk. The
motion of the point is towards the minimum of the potential
energy, resulting in the rise of the fictitious kinetic energy.
After some time, a fraction of the kinetic energy is removed
from the system, and the whole process of exploring the con-
figuration space begins again. Eventually, the system reaches
its minimum potential energy and the set of induced charge
values corresponding to this state is obtained as the solution.

To demonstrate and test our numerical optimization strat-
egy, we first applied it to the problem of a single positive
charge outside a dielectric sphere as depicted in Fig. 4, and
then to the problem of many charges near a spherical dielec-
tric interface as shown in Fig. 5. For the single test charge
problem, the exact result for the induced density is given by
Eq. (47). The exact results for the induced charge density in
the many-charge system are obtained from a careful superpo-
sition of the induced densities generated by considering each
charge separately. We test the accuracy of our numerical pro-
cedure against these exact results. We consider a spherical di-
electric of permittivity εin surrounded by an exterior dielectric
with permittivity εout. The radius of the sphere is a = 10σ ,
where σ is the diameter of the point charge taken to be σ

= lB/2 and serves as the length unit. Here, lB is the Bjerrum
length in water. The unit of charge is taken to be e, the charge
on a proton. The interface is discretized with roughly M
= 600 points and the fictitious MD simulation parameters are:
 = 0.001, μk = 5−10, and S = 100 000. S is the number of
MD steps and we quench the system every S/10 steps.

In Fig. 6 we show the polarization charge density for the
single test charge problem. We place the positive unit charge
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FIG. 6. Polarization charge density (in units of e/σ 2) as a function of θ in-
duced on the dielectric sphere from a point charge located outside the sphere
(see Fig. 4). εin is the permittivity inside the sphere and εout is the permittiv-
ity outside. Red triangles are the results from the numerical minimization of
the functional F [ωs] and green circles are exact results given by Eq. (47).
The standard triangles and the hollow circles correspond to the case when
εin = 35 and εout = 80, while the inverted triangles and filled circles corre-
spond to the inverse problem where εin = 80 and εout = 35. The inset shows
the details of the density around the point where it changes sign.

on the z-axis at a distance of d = 12σ from the center of
the sphere. Due to the inherent symmetry associated with this
problem, the induced density is only a function of the θ vari-
able. In addition, the density profile is symmetric around the
θ = π point and hence the results are shown for θ ∈ [0, π ].
We compute the density for the case when εin = 35, εout = 80
and also for the inverse problem where εin = 80, εout = 35.
As is evident from Fig. 6, our numerical results (red triangles)
agree very well with the exact results (green circles) for both
the cases studied. We observe that in the first case (εin < εout),
the density induced on the portion of the interface that is near-
est to the charge (low θ values) is positive, while in the latter
case (εin > εout) it is negative. Also, in both cases, the sign
of the induced density flips at some value of θ (see inset in
Fig. 6). Furthermore, in either case, the magnitude of the in-
duced density falls rapidly in the beginning as the angle θ

increases. All these observations, which are consistent with
basic electrostatics principles, suggest that the test charge will
repel away from the dielectric sphere when the dielctric con-
stant of the latter is lower than the medium in which the test
charge is embedded. Otherwise, the test charge will be at-
tracted towards the interface.

We now present our findings for the case of many charges
near the spherical interface. We consider 10 positive and 10
negative monovalent ions inside the sphere and the same out-
side. Thus, the total number of ions equals 40. The positions
of the ions are chosen at random and the ions remain fixed at
their locations. As the system is electroneutral in each dielec-
tric, the net induced charge on the sphere is 0. In Fig. 7(a) we
show our simulation results for the polarization charge den-
sity at the interface as a function of the angles θ and φ for
the case: εin = 35, εout = 80. We refer to this graph as the po-
larization map. For this case, the point charge present inside
(outside) the dielectric induces a charge of opposite (same)
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FIG. 7. Polarization charge density (color-coded) (in units of e/σ 2) as a function of θ and φ induced on the dielectric sphere from a set of point charges around
it (see Fig. 5). The permittivity inside the sphere is εin and the permittivity outside the sphere equals εout. The left column represents the case when εin = 35
and εout = 80, while the right column shows the inverse case of εin = 80 and εout = 35. (a) and (c) Results from the numerical minimization of the functional
F [ωs]. (b) and (d) Exact results.

sign on the interface boundary closest to it. The regions of
intense red (highly positive) or intense blue (highly negative)
on the polarization map suggest the presence of an ion or
many ions near the interface at the corresponding θ , φ loca-
tion. Fig. 7(b) shows the exact values of the induced density
for this system. It is clear that the results from the numeri-
cal minimization of our functional are in excellent agreement
with the exact results.

In Fig. 7(c) we show the polarization map for the same
system as above, but with the dielectric media switched. Thus,
for this case εin = 80 and εout = 35. We observe that by and
large this map looks like the “image” of Fig. 7(a). Regions
with more positive (red) induced charge in Fig. 7(c) are the
ones that were highly negative (blue) in Fig. 7(a) and vice
versa. We indeed expect this as now, in direct contrast to be-
fore, an ion inside (outside) the dielectric induces a charge of
the same (opposite) sign on the interface boundary closest to
it. Once again, comparison with exact results in Fig. 7(d) con-
firms the accuracy of the numerical minimization procedure.

We note that since our functional is an energy functional,
the above described numerical minimization procedure for the
case when the ions are static, can be suitably modified to in-
corporate the scenario when ions are moving, like in a con-
ventional MD simulation. Results from such a dynamical op-
timization procedure were presented in Ref. 42, along with a
brief description of the method itself.

V. CONCLUSION

We have presented a variational formulation of electro-
statics specifically designed to treat the problem of dielectric
heterogeneities in charged systems. Assuming only the con-
dition of linear response, we constructed an energy functional

that employs the polarization charge density as its sole varia-
tional field. This functional is applicable for any configuration
of free charges and arbitrary spatial dependence of the dielec-
tric response. We discussed in some depth the basic structure
of our functional, drawing comparisons with past functionals
and revealing how more energy functionals can be constructed
using our variational approach.

Next, we focused on the important case of uniform di-
electrics separated by sharp interfaces. We showed that under
this piecewise-uniform dielectric response, our functional re-
duces to a functional of only the surface polarization charge
density. Such a reduction of the three-dimensional electro-
static problem to a two-dimensional one has many advantages
from a computational perspective. We then obtained the spe-
cific expressions for this reduced functional, and subsequently
the induced charge density, for the case of a point charge near
a planar interface and for a point charge near a spherical di-
electric. Finally, in the view of applying our approach to more
complicated systems, we discussed the numerical implemen-
tation of our minimizing variational principle for a system ex-
hibiting piecewise-uniform dielectric response. We illustrated
this procedure for a system of monovalent ions near a spher-
ical dielectric; obtaining the polarization charge density in-
duced on the interface and finding excellent agreement with
exact results.

Due to the fact that F [ω] is an energy functional, its
minimization can be carried out in conjunction with the up-
date of the ionic configuration. In Ref. 42 we demonstrated
such a dynamical minimization method. This is of tremen-
dous significance with regards to MD simulations of ions in
heterogeneous media, as the explicit solution of the Poisson
equation at each step is avoided. Detailed explorations of the
dynamical optimization of our functional and the associated
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MD simulations investigating diverse systems such as charged
colloidal dispersions and liquid-liquid emulsions will be the
subject of a future study.
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APPENDIX A: EXTREMAL BEHAVIOR OF F [ω]

In this appendix we investigate the extremal properties of
F [ω]. First, we derive the condition for which F [ω] is an
extremum. Next, we prove that at its extremum the functional
gives the true electrostatic energy. And finally, we show that
the functional becomes a minimum at its extremum.

1. Extremum condition for F [ω]

The derivation of the extremum condition for F [ω] be-
gins by recording how much the functional changes when the
function ω is changed by an arbitrary small amount δω. We
use Eq. (1) to compute F [ω + δω], retaining terms up to
first order. The original functional F [ω] is then subtracted
from the result giving the first variation δF = F [ω + δω]
− F [ω]. Employing standard vector calculus identities45

wherever necessary and using Dirichlet boundary condition
to make the surface integrals vanish by invoking the bound-
ary at infinity, we find the first variation δF to be

δF =
∫

δωr

∫
Gr,r′

×∇ ·
(

χr′∇
∫

Gr′,r′′ (�r′′ − ωr′′ ) d3r ′′
)

d3r ′d3r,

(A1)

where we have suppressed the functional part of the notation
for � for brevity. By definition, at the point of extremum,
the first variation δF must vanish for an arbitrary δω. We
see from (A1) that this is only true if the following condition
holds:∫

Gr,r′∇ ·
(

χr′∇
∫

Gr′,r′′ (�r′′ − ωr′′ ) d3r ′′
)

d3r ′ = 0.

(A2)

We now simplify Eq. (A2). Operating on both sides of
(A2) with the Laplacian operator and using (11) we obtain

∇ ·
(

χr∇
∫

Gr,r′ (�r′ − ωr′) d3r ′
)

= 0, (A3)

where towards the end we replaced the dummy variable r′′

with r′. It is useful to introduce

f (r) =
∫

Gr,r′ (�r′ − ωr′ ) d3r ′, (A4)

using which, Eq. (A3) can be written as

∇ · (χr∇fr) = 0. (A5)

Multiplying both sides of (A5) by f (r) and integrating over
whole space we obtain∫

fr∇ · (χr∇fr) d3r = 0. (A6)

Integrating by parts and employing DBC, we transform the
above integral into ∫

χr |∇fr|2 d3r = 0. (A7)

It is clear that since χ (r) is always non-negative the integrand
in the above equation is always non-negative. This means that
the only way the integral is zero is if the integrand is identi-
cally zero at all points, which implies ∇f (r) = 0 or f (r) is a
constant. (Strictly speaking, the integrand can be zero without
requiring that the gradient of f vanishes: this happens when
χ (r) vanishes at all points. But this situation represents the
presence of free space everywhere, and in that case our func-
tional becomes independent of ω.) Using (A4) to expand f, we
thus obtain the equality:∫

Gr,r′ (�r′ − ωr′) d3r ′ = c, (A8)

where c is some constant. Operating with the Laplacian on
both sides of (A8) and re-employing (11) we get

ωr − �r = 0, (A9)

which, after expanding out the function � using (2),
becomes

ωr = ∇ ·
(

χr∇
∫

Gr,r′ (ρr′ + ωr′) d3r ′
)

. (A10)

Equation (A10) gives the extremum condition for F [ω]. It is
clear from the definition of ω, the condition of linear response,
and basic laws of electrostatics that the right iterative relation
for ω is obtained from the process of extremizing F [ω].

2. Value of F [ω] at the extremum

As a first step towards proving that the functional F [ω]
is an energy functional, we investigate here its value at ex-
tremum. Let ω̄ be the function that extremizes the functional
F [ω]. The results of the last section show that w̄ must satisfy
(A9) and so we obtain

ω̄r − �r[ω̄] = 0. (A11)

To evaluate the value of F [ω] at the extremum point we let
ω = ω̄ in (1), thus obtaining

F [ω̄] = 1

2

∫∫
ρrGr,r′ (ρr′ + �r′ [ω̄]) d3r ′d3r

−1

2

∫∫
�r[ω̄]Gr,r′ (ω̄r′ − �r′[ω̄]) d3r ′d3r. (A12)

Using (A11), the second double integral in the above equation
vanishes and we obtain

F [ω̄] = 1

2

∫∫
ρrGr,r′ (ρr′ + ω̄) d3r ′d3r. (A13)
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As we noted earlier, the function ψ given by (17) coin-
cides with the electrostatic potential at the point of extremum.
Thus, using (17) we obtain the following expression for the
true electrostatic potential:

φr =
∫

Gr,r′ (ρr′ + ω̄r′ ) d3r ′. (A14)

Using (A14), the extremum value given in Eq. (A13)
becomes

F [ω̄] = 1

2

∫
ρrφrd

3r. (A15)

The expression on the right hand side of the above equa-
tion is the standard expression for the electrostatic energy,
equivalent to 1

8π

∫
ε (r) |E (r)|2 d3r . Hence, the extremum

value of F [ω] gives the true electrostatic energy of the
system.

3. Proof that the extremum is a minimum

To complete the proof that F [ω] is an energy func-
tional we now show that F [ω] becomes a minimum at its
extremum. This begins by analyzing the terms in the vari-
ation of F [ω] that are of second order in δω, terms which
we ignored during the derivation of the extremum condition.
If this second order change is shown to be positive then we
would have proven that our functional becomes a minimum
at the extremum point. It is clear from (1) that the terms
in δF = F [ω + δω] − F [ω] that are quadratic in δω come
only from the second double integral in (1), and we obtain

δ2F = 1

2

∫∫
δ�rGr,r′δ�r′d3r ′d3r

−1

2

∫∫
δ�rGr,r′δωr′d3r ′d3r, (A16)

where δ� is given by

δ� = ∇ ·
(

χr∇
∫

Gr,r′δωr′d3r ′
)

, (A17)

and δ2F denotes the second order variation in F [ω]. We fo-
cus on the first double integral in (A16). Integrating by parts
and using the basic property of Green’s function, namely,
Eq. (11), the following identity can be derived:

4π

∫∫
hrGr,r′hr′d3r ′d3r =

∫ ∣∣∣∣∇
∫

Gr,r′hr′d3r ′
∣∣∣∣
2

d3r,

(A18)

where h is an arbitrary function. In deriving the above relation
we invoked DBC for similar purposes as we have done before.
Using this identity with h = δ�, the first term in (A16) trans-
forms to

1

2

∫∫
δ�rGr,r′δ�r′d3r ′d3r

= 1

8π

∫ ∣∣∣∣∇
∫

Gr,r′δ�r′d3r ′
∣∣∣∣
2

d3r. (A19)

We note that the right hand side of the above equation is al-
ways positive.

We next probe the second term in (A16). Expanding δ�

using (A17), the second term becomes

1

2

∫∫
δ�rGr,r′δωr′d3r ′d3r

= 1

2

∫
∇ ·

(
χr∇

∫
Gr,r′′δωr′′d3r ′′

)∫
Gr,r′δωr′d3r ′d3r.

(A20)

Integrating by parts and employing DBC we transform the
right hand side of (A20) into a dot product of two gradients,
as in

1

2

∫∫
δ�rGr,r′δωr′d3r ′d3r

= −1

2

∫
χr∇

∫
Gr,r′′δωr′′d3r ′′ · ∇

∫
Gr,r′δωr′d3r ′d3r,

(A21)

which is equivalent to

1

2

∫∫
δ�rGr,r′δωr′d3r ′d3r

= −1

2

∫
χr

∣∣∣∣∇
∫

Gr,r′δωr′d3r ′
∣∣∣∣
2

d3r. (A22)

The two double integrals in (A16) can now be replaced
with expressions obtained in Eqs. (A19) and (A22). Doing so
gives the following for the second variation:

δ2F = 1

8π

∫ ∣∣∣∣∇
∫

Gr,r′δ�r′d3r ′
∣∣∣∣
2

d3r

+1

2

∫
χr

∣∣∣∣∇
∫

Gr,r′δωr′d3r ′
∣∣∣∣
2

d3r. (A23)

Since χ (r) is non-negative everywhere, it is clear that both the
terms on the right hand side of Eq. (A23) are always positive,
implying δ2F > 0, thus completing the proof.

APPENDIX B: POINT CHARGES IN UNIFORM
DIELECTRIC

In this short appendix we apply our variational principle
to the simplest case of a uniform dielectric. We derive the
expression of our functional for this particular case and also
obtain the induced density as a result of the minimization of
the functional.

For a uniform dielectric χ (r) = χu, where χu is a con-
stant. Employing this expression for χ (r) in (2) and using
(12), we obtain

�r[ω] = −4πχu (ρr + ωr) . (B1)
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Substituting �r[ω] from (B1) in (1) transforms the latter
equation into

FU[ω] = 1

2

(
ε2
u − 3εu + 3

) ∫∫
ρrGr,r′ρr′d3r ′d3r

+ (εu − 1)2
∫∫

ρrGr,r′ωr′d3r ′d3r

+1

2
εu (εu − 1)

∫∫
ωrGr,r′ωr′d3r ′d3r, (B2)

where we have expressed the resulting functional in terms of
the uniform permittivity εu, which is connected to χu via the
relation εu = 1 + 4πχu. Equation (B2) gives the expression
of our functional for the case of point charges in the presence
of uniform dielectric response.

Let us now derive the expression for the density of in-
duced charges in this case. From elementary electrostatics we
expect that the induced charges are only to be found at the lo-
cation of the free charges. The first variation of the functional
in (B2) is

δFU = (εu − 1)2
∫∫

ρrGr,r′δωr′d3r ′d3r

+εu (εu − 1)
∫∫

ωrGr,r′δωr′d3r ′d3r. (B3)

For δFU to vanish for any δω, it is clear from (B3) that the
following must be true:∫

Gr,r′
(
(εu − 1)2 ρr′ + εu (εu − 1) ωr′

)
d3r ′ = 0. (B4)

Applying the Laplacian on both sides of (B4) and employing
(11), we obtain

(εu − 1)2 ρr + εu (εu − 1) ωr = 0, (B5)

which simplifies to

ωr = −εu − 1

εu

ρr. (B6)

Equation (B6) is indeed the standard expression for the in-
duced charge density for the case of a uniform dielectric.
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